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An interesting problem in gas dynamics is the generation and prolonged existence of 
ordered vortex structures in a flow with high initial symmetry or even in a fluid at rest. 
In [I] the problem was considered from the thermodynamic point of view and it was stated 
that "classical thermodynamics is in essence a theory of the breakdown of structure and it 
is necessary to add to it the theory of the creation of structure." The appearance of vortex 
structures in an initially laminar flow, even though the initial steady flow satisfies the 
conditions of mechanical equilibrium (balance of forces) is due to the development of certain 
instabilities, which transform the system into a new stable steady state. In the flow creat- 
ed by the vortex structure, the loss of kinetic energy due to dissipative forces must ob- 
viously be compensated by a supply of "external" energy. 

The classical example of the formation of a vortex structure is the Benard problem, 
in which the transition to a new steady state is caused by a convective instability. Ap- 
plication of the theory of hydrodynamic stability, which is based on an analysis of the nor- 
mal modes, was applied to this problem in [2]. The linear stability theory [2, 3] can be 
used to find the minimum temperature difference for which there is a steady-state balance 
between viscous dissipation of kinetic energy and the production of internal energy from 
buoyancy forces. A similar situation obviously also applies in the formation of steady vor- 
tex structures in nature and also in the streamlining of a moving body by a gas. 

In the present paper we consider large-scale vortices in the atmosphere of a rotating 
planet. Development of a convective instability in the centrifugal force field is assumed 
to be the cause of the generation of steady vortices and latitudinal flow. The dynamics 
of the overall vortex structure flow on the surface of a uniformly rotating sphere is con- 
sidered in order to obtain possible steady configurations which are continuously distributed 
over the entire sphere. In the solutions obtained in the "thin atmosphere" approximation, 
separate vortices are bounded by separatrices. The rotational energy of the planet serves 
as the energy source responsible for the prolonged existence of a steady-state structure 
of rotating vortices and corresponding latitudinal flows. 

An important special case is the generation and prolonged existence of the Great Red 
Spot of Jupiter, which is a vortex in the atmosphere of Jupiter. In contrast to the assumptions 
and results of previous papers [4-6] on this problem, here the cause of the formation of 
the Great Red Spot is assumed to be a convective instability, and its well-defined boundary 
is explained by the fact that it is bounded from the surrounding latitudinal flow field by 
a separatrix. 

Two fundamental assumptions are made in order to obtain analytical solutions. The first 
is that perturbations of the gravitational field are neglected. The second is that com- 
ponents of the velocity perpendicular to the surface of the planet are neglected. 

I. Convective and Centrifugal Instability in Cylindrical Geometry. There are two clas- 
sical instabilities in the linear theory of waves in a rotating cylinder: in general the 
convective instability [3], and also the centrifugal instability (the Rayleigh-Taylor insta- 
bility [7]), when the perturbation is axially symmetric 8/8@ = 0 and lies in a meridian plane 
r, z. The physical interpretation of both instabilities is the same and is due to frozen 
functions (the entropy S for the convective instability, and the angular momentum I = rv~ 
for the centrifugal instability) floating upward. The local stability criteria are expressed 
in terms of the derivative of the frozen functions S and I. 

Since the initial configuration does not depend on ~ and z, the eigenfunctions of the 
linear problem have the forms 
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Ur "< siil(nlr A_ o/t)sin kz, c m, p, p ~ Cos(ni(p -~ o)i)sin l~':, 

~'~ ,--- sin(mq,--'- o~t)cos l,'z, 

where the coefficients are functions of r which are to be determined. 

We use the system of equations of dissipationless gas dynamics 

O p l d t @  div pv = O, pdv/dt  = --Vp --  pV(D, d N / d t  - - O .  ( 1 . 1 )  

Here p is the density; p is the pressure; ~ is the gravitational potential; N = pp-~; y is 
the adiabatic index. The linearization of this system of equations for an initial steady 
configuration in which v r = O, v z = O, and in which the condition of mechanical equilibrium 
v~2/r = p'/p + ~' is satisfied, reduces to a single equation for f(r) (f = rvr/y , y = ~ + 
mvw/r) when perturbations in ~ are neglected: 

. . . .  =,., )j f =o, 
where s = 7pm28/pr 2 - y2, ~ = i + k2r2/m 2, and a prime denotes differentiation with respect 
to r. In the limit y + 0 this equation reduces to 

/PU-rI '  1 JPY2 kfP( 12)' P' [ ' __ / = 0 ( 1 . 2 )  

(C = ~ / p  i s  the  speed o f  sound) .  A necessa ry  l o c a l  c o n d i t i o n  f o r  s t a b i l i t y  then f o l l o w s :  

k~p(I~)'/~m~r - -  p ' N ' / y N  > 0. ( 1 . 3 )  

In  t h e  c a s e  o f  a x i a l  symmetry (m = 0) ( 1 . 3 )  g i v e s  t h e  s t a b i l i t y  c r i t e r i o n  [8]  0 ( 1 2 ) ' /  
r 3 - p ' N ' / x N  > 0, f o r  b o t h  t h e  c o n v e c t i v e  and c e n t r i f u g a l  i n s t a b i l i t y .  

For  a z i m u t h a l  p e r t u r b a t i o n s  l y i n g  in  t h e  r ,  ~ p l a n e ,  we o b t a i n  f o r  k + 0 t h e  s t a b i l i t y  
c o n d i t i o n  - p ' N '  > 0. I n  t h i s  c a s e  o n l y  t h e  c o n v e c t i v e  i n s t a b i l i t y  r e m a i n s .  

I n  t h e  model  o f  a r o t a t i n g  d i s k ,  where t h e  v e l o c i t y  l i e s  in  t h e  r ,  ~ p l a n e  and t h e  cen-  
t r i f u g a l  f o r c e  i s  b a l a n c e d  in  t h e  s t e a d y  s t a t e  by t h e  p r e s s u r e  g r a d i e n t ,  ( 1 . 2 )  can be w r i t t e n  
in the form 

..4t2 
(p,.y2/,), _ m 2 (py2/r _ p'v~ + p, ~ / c  ) / = 0 ( ~  = vr ( 1 . 4 )  

i n  t h i s  c a s e  t h e  c o n d i t i o n  f o r  c o n v e c t i v e  s t a b i l i t y  v , 2 ( p ,  _ p r v , 2 / c  2) > 0 i m p l i e s  t h e r e  
i s  an i n s t a b i l i t y  in  a u n i f o r m  r o t a t i n g  f i e l d  p '  = 0 i f  one does  n o t  t a k e  t h e  l i m i t  c 2 ~ ~. 

We pu t  p = c o n s t ,  ~ = c o n s t ,  c 2 = c o n s t  in  o r d e r  t o  e s t i m a t e  t h e  r a t e  o f  g rowth  ( t h e  
i n c r e m e n t )  o f  t h e  i n s t a b i l i t y .  Then t h e  s o l u t i o n  o f  ( 1 . 4 )  s a t i s f y i n g  t h e  b o u n d a r y  c o n d i t i o n  
f (R)  = 0 w i l l  be t h e  B e s s e l  f u n c t i o n  Jm(xmnr /R) ,  where Xmn a r e  t h e  r o o t s  o f  Jm(x) .  The 
e i g e n f r e q u e n c i e s  a r e  g i v e n  by ~ = -my ~ • imR~q.2/CXmn . T h e r e f o r e ,  t h e  i n c r e m e n t  i n c r e a s e s  w i t h  
m, d e c r e a s e s  w i t h  n ,  and i s  p r o p o r t i o n a l  t o  v~0 2. 

2. S t a b i l i t y  o f  a R o t a t i n g  A x i a l l y  Symmetr ic  L a y e r .  C o n s i d e r  a r o t a t i n g  l a y e r  o f  gas  
in  t h e  s t e a d y  s t a t e ,  bounded by two a r b i t r a r y  a x i a l l y  symmet r i c  s u r f a c e s  and in  t h e  p r e s e n c e  
o f  a g r a v i t a t i o n a l  f o r c e  V~. The p e r t u r b e d  m o t i o n  o f  t h e  gas i s  d e s c r i b e d  by t h e  sy s t em 
(i.i), provided that dissipative processes are neglected. We take the axis of rotation to 
be the z axis of a cylindrical system of coordinates r, ~, z, and introduce the orthogonal 
curvilinear coordinates s, ~, n, where the distances n and s are measured along the normal 
to the layer and in the cross section of the meridian plane. Then 

dn = d z c o s ~ - - d r s i n a ,  d s =  d z s i n ~ + & ' c o s ~ ,  drY= d s 2 + r ~ d ~ 2 - F d n  ~ 

(a  i s  t h e  a n g l e  be tween t h e  u n i t  v e c t o r s  e s and e r ,  such  t h a t  d r / d s  = cos  ~) .  Assuming t h a t  
in the initial steady state the velocity has a single component v~(~), and the equation of 
mechanical equilibrium is satisfied 

OplOs + pOtDlOs = (p/s') v$ cos <z, (2.1) 
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and finally assuming that the perturbed velocity does not have a normal component v = (Vs, 
v,r) and that the gravitational field is unperturbed, the linearized equations of motion 
for the perturbations Vs ~ sin (m~p + mt), v,~, p, p ~ cos (mq > + mt) reduce to a single equa- 
tion for f = rVs: 

{f,rc /,) o 2vq;cos~ ~ 1:' rp '  ,1 iT,- , ip ' - -oc"-[ '"  . . . . . . .  4 -  P' I /  - -  ',"o' "[ 
- -  '-  - - - O f '  + ,o~ 9' 91",., , s , s ,,,2) + T ~  ,s ' ' ~J'- ~ i / -  =0" ( 2 . 2 )  

Here y = ~/m + v~, s = m2(c 2 - r2y2), v~ = v~/r, I = rv~. In the limit y + 0 we have from 
(2 .2)  

(or/')' {,,?,~, , / ~'/c'- o'} -- ~ ~ ,or / = 0 .  r y 

And t h u s  when t h e  l o c a l  c o n d i t i o n  

(2 .3)  

P'(P '/c2 - -  9 ' ) >  0 ( 2 . 4 )  

is satisfied there is a convective instability which leads to a vortex structure inside the 
rotating gas layer. Physically the instability is interpreted as entropy floating upward 
in the force field F = rv~ 2cos~e r - #'(s)e s for FV(pp-7) > 0. 

For a thin spherical layer in which the gravitational force is directed toward the cen- 
ter of the sphere (~ = ~/2 - 8, s = RS, r = RsinS, 8 is the latitude), Eq. (2.1) can be 
written in the form 

p'(0) = p ~  ctg0 = p~2R2sin0cos0. ( 2 . 5 )  

This equation can be integrated if one assumed the dependence p ~ p~0 (see Appendix). Put ~ 
ting ~ = const, p = (k/m)pT, we find the latitude dependence of the temperature in the at- 
mosphere of the planet 

l--V,~ . , (2.6) T(0) = T(~/4) 4k/m~~ 

which depends on the rotational velocity of the atmosphere at the equator fiR, on the effec- 
tive molecular mass m, and on the polytropic index 70- The parameters m and 7o can be elim- 
inated if the law of decrease of temperature with height is known. Indeed, from the equa- 
tion of equilibrium at the equator ~2R = g + (I - i/Y0)-ikT'/m we have for fl2R ~ g 

T'~---- - - (1  - -  l /7o)mg/k ,  T(0)= T(g/4)+ AT cos 20, (2.6a) 
A T  = ~=R2T ' /g .  

This formula is applicable in the troposphere, where the gas density is still sufficiently 
large. For Earth (m = 29m D, g = 9.8 m/sec 2) and for Venus (m = 44mp, g = 8.9 m/sec 2) the 
first equation of (2.6a) gives the correct experimentally measured temperature gradient 
T' = -6.5 and -8 deg/km for the identical value of the parameter 70 = 1.235, which describes 
the "standard atmosphere" of the earth. Using this value of 70 and substituting in (2.6a) 
the characteristics of the rotating atmospheres of the different planets, we obtain -T' = 
8, 6.5, 3.5, 1.4 deg/km and -AT = 3, 35, 15, 200 ~ , respectively, for Venus, Earth, Mars, 
Jupiter. Hence it is evident that the average latitude dependence of the temperature in 
the troposphere of the earth is described to satisfactory accuracy by the second equation 
of (2.6a). The anomalously large temperature variation T(6) on Jupiter is due to its large 
velocity of rotation. 

According to (2.4), a necessary condition for stability of a rotating spherical atmos- 
phere is v~2[cot 8v~=/c 2 - p'(8)/p] < 0 and this is the same as the condition for the ab- 

sence of convection in the centrifugal force field. Putting p ~ @Y0, v = fRsin 8 and re- 
placing the argument 8 by x = cos 8, we can write (2.3) as 

The increment of growth is estimated by applying the variational method and using the Le- 
gendre polynomials Pnm(x) as trial f~nctions. Neglecting the variation of p and g, we ob- 
tain 
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T h e r e f o r e  t h e  i n c r e m e n t  o f  g rowth  o f  t h e  i n s t a b i l i t y  ~ ~ / 1  - u165 i n c r e a s e s  w i t h  t h e  number 
o f  t h e  a z i m u t h a l  mode m, d e c r e a s e s  w i t h  t h e  number o f  t h e  l a t i t u d e  mode n,  and i s  p r o p o r t i o n -  
a l  t o  t h e  s q u a r e  o f  t h e  r o t a t i o n a l  a n g u l a r  v e l o c i t y  ~ o f  t h e  a t m o s p h e r e  o f  t h e  p l a n e t .  

For  a t]~in p a r a b o l i c  l a y e r  in  t h e  g r a v i t a t i o n a l  f o r c e  f i e l d  V~ = ge z Eq. ( 2 . 1 )  has  t h e  
2 form p ' ( s ) / o  = r ~  c o s ~  - g s i n ~ ,  w h i l e  ( 2 . 2 )  f o r  an i n c o m p r e s s i b l e  f l u i d  (c  a + ~) g i v e s  

(gr/')'-- + -~- (p cos ~) y~ I rvg ]]/= 0. (2.5a) 

Let the equation of the parabolic layer be z = <0 r2, then tan ~ = 2<0r. For constant 
angular velocity (v = const) the surfaces of constant pressure (p = const) lie on the par- 
aboloids z = <r 2 + const, where < = 6 ~2/2g, and hence g tan~/zv~ 2 = <0/<- Neglecting quan- 

tities ~~2, 'we obtain 

�9 - T ) j ; s = o  y2 (2.6a) 

(• = const, y = const). 

If the free surface s = s R is maintained in the initial steady state by the atmospheric pres- 

sure of the gas with density Pe ~ P, then (2.6a) and the boundary condition at s = s R 

7 
are satisfied by the function f ~ s m for an arbitrary dependence ~(s)~ This leads to the 
dispersion relation 

~,ivm = t -- m +__ ] / t  -- m(t -- •215 (2.8) 

For ~ > <0, when the angular velocity of rotation ~ exceeds ~ ,  an instability de- 
velops with an increment which increases with the number of the azimuthal mode m. 

Analogous instability of azimuthal perturbations in a rotating plasma cylinder retained 
in equilibrium by a magnetic field has been considered in [8-10]. The equations for the 
corresponding MHD problem can be obtained from (2.6a)-(2.8) if one sets K 0 = 0. The "boun- 
dary" instability considered here in a rough model of a parabolic layer with constant thick- 
ness can lead to a system of vortices, as observed experimentally [4]. 

In order to estimate the stabilizing effect of the viscosity, we consider the incom- 
pressible rotation of a fluid inside the square 0 < x < s 0 < z < s described by the stream 
function ~ = Acos~x/s163 It follows from the equation By/at = ray (v is the kine- 
matic viscosity) that the damping decrement is 5 1 = ~2v/s Putting 6 = R~2/c, R ~ s we 
find that stabilization becomes significant when 61 > 6, that is A = ~2s < ~. The 
dimensionless number A is equal to the product of the Mach number M and Reynolds number Re. 
In particular, for water it follows from these estimates that an instability can develop 
when 2~ D > 70s However, it should be kept in mind that factors not taken into account 
here, such as supercriticality, can lead to an increase in the value of ~ necessary for the 
development of an instability. 

3. Steady Vortices in a Rotating Gas. The existence of steady vortices is of great 
interest in a wide class of problems in gas dynamics. In recent years several papers have 
been published in which this problem is considered in connection with the construction of 
dynamical models of the Great Red Spot of Jupiter [5, 6] based on its soliton structure 
(Rossby soliton). In the present paper the theory of normal modes is used to treat the solu- 
tion of the :general problem for the possible configurations of vortices and the correspond- 
ing latitude flows in the atmosphere of a rotating planet with a smooth axially symmetric 
surface. The use of symmetry arguments and the "thin atmosphere" approximation considerably 
simplify the problem and reduce it to the solution of a single equation for Y, containing 
an arbitrary function ~ '(~). For a suitable choice of ~ (~) this equation becomes linear, 
which leads to a class of exact analytical solutions. 

The system of gas-dynamical equations in the absence of dissipation can be written in 
the following form in a coordinate system rotating with a constant value of ~: 
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ov vp ( , , ~ t  ) 
I I~t + [curly + 2~, v] -- V ~ + [~r] ~ 

p 2 2 ' 
op dS O. 
0--7" + div pv = O, d'--t- = 

Using the thermodynamic identity dW = dp/p + TdS, we find for steady motion (8/at = 0): 

(3.1) 

[curly @ 2Q,v] = - - V ; ~  @ TVS,  div pv = 0~ ( 3 . 2 )  

S i n c e  vVS = 0 a c c o r d i n g  t o  ( 3 . 1 ) ,  i t  f o l l o w s  from ( 3 . 2 )  t h a t  v V J  = O, and hence  t h e  f u n c -  
t i o n  ~ i s  c o n s t a n t  a l o n g  a s t r e a m l i n e  o f  t h e  f l u i d .  

We i n t r o d u c e  t h e  o r t h o g o n a l  c o o r d i n a t e  s y s t e m  x i ,  dr  2 = g i k d x i d x  k such  t h a t  t h e  l i n e s  
x I and x 2 lie on the surface E under consideration, while the coordinate x 3 is measured along 
the normal n to this surface. Then assuming that wl= 0 and that the depth of the layer 
of liquid (or gas) on the surface Z is small, we have v 3 = 0, pvrgv ~ = -aY/3x 2, p/gv 2~ aY/ 

ax I, rotv = %divVY/9, where g is the determinant of the metric tensor gik" The condition of 
balance of tangential forces leads to the equation 

vw + 2 Qe3 = ~ s ( F )  Z ' -~-div T -  ~ - -  S (W). ( 3 . 3 )  

Assuming f u r t h e r  t h a t  t h e  f l u i d  i s  i n c o m p r e s s i b l e  w i t h  p = c o n s t ,  and r e d e f i n i n g  Y such  
t h a t  p does  n o t  a p p e a r  in  i t ,  we f i n d  

]/rg u~= --  O~/Ox~, ]/--g~ u~=O~/Ox~, (3.4) 

AW + 2Qe ~= ~ ' (~)~ ~ (W)=  P/9 + ~ + v~/2 --[~r]~/2 

[~(Y) is an arbitrary function]. These equations become exact if a/ax 3 = 0, which occurs 

for a cylindrical disk when e 3-- e,. and 8/3z = 0. The equation for Y is linear if the func- 
tion 3~'(Y) is linear. The function ~ is the angular velocity of the coordinate system in 
which the flow is steady (8/3t = 0). 

For a rotating disk (x 1= r, x ~== % x 3= z~ e 3-- e z, ~----~ez) the equations (3.4) become: 

rye= --OtF/O(p, v~= OfF~Or, 
0 OW i 02q r P V ~ Q2r2 
o,.r-~-r + - - ~ = ~ ' ( q 0 - - 2 - ~  J 'W)="~ '+q)+ z r 2 Or 2 

For the linear function ~ '(Y) = A + BY we have 

A ~  - -  B ~  = A - -  2 ~ .  ( 3 . 5 )  

We seek a solution of (3.5) in the form Y = F(r) + f(r)cosm% which leads to the pair of 
i d dF i d d/ [ m ~ ) 

e q u a t i o n s  -7---sr--f; BF = A - - r e ,  - - - - r  + B --" r dr -d~--Ir-~- , / = 0. If B is determined from the boun- 

dary condition f(R) = 0, then B = -k = = -Xmn2/R =, where Xmn are the roots of the Bessel func- 
tion Jm(x). We then have a solution which is bounded for r < R, and which can be expressed 
in terms of Bessel functions Y = (A - 2~)/k = +a J0(kr) + AJm(kr ) cosm , where a and X are 
arbitrary constants characterizing the amplitudes of the "latitude" flows and the vortices. 
In the case considered here, the solution in the rotating coordinate system differs from 
the solution in a fixed coordinate system [8] only by the addition of a constant to Y. 

In the case of a rotating sphere, we use the spherical coordinates x I = e, x = = ~, x 3 = 

r, e a= er then for r = R we have vr = aY/30, sin0v 0 = -3Y/3~. 

i o sin0 0l~[ l I + l 02~ + 2 Q R c o s 0 = ~ ' ( ~ ) "  ( 3 " 6 )  
sinO ~ 80 sin~O 8~ 2 

I t  i s  n e c e s s a r y  t o  s o l v e  ( 3 . 5 )  in  o r d e r  t o  o b t a i n  t h e  d i s t r i b u t i o n  o f  s t e a d y  v o r t i c e s  on 
t h e  s u r f a c e  o f  t h e  s p h e r e .  A c l a s s  o f  e x a c t  a n a l y t i c a l  s o l u t i o n s  o f  ( 3 . 6 )  can be o b t a i n e d  
for the linear function ~ '(Y) = A + BY. In this case, 

= F ( 0 ) +  I(0) cos , n ~ .  (3.7) 
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Here F and f are the solutions of the systems of equations 

d dF d ( t _ x ~ ) _ _ _  __+B f=O, (3 8) d-7 ( t - -  xZ)-~x - - B F = A - - 2 Q R x '  ~ dx ~ t _  x 2 , 

and x = cos 6. The function F(8) describes the latitude flow, while f(8) is proportional 
to the angular velocity of the vortex at its center, that is at the elliptic singular point 
of the family of streamlines ~ = const. A solution of the system (3.8), which depends es- 
sentially on ~ and which is continuous and single-valued, exists when B = -n(n + i), n = 
i, 2, 3, ... When n = 1 the solution of the first equation is singular and hence regular 
solutions exist on the entire surface of the sphere only when n ~ 2. Then 

W = n(nA+ l- - - - - -~ + 2--20Rn(n+c~ 0t) + aP~ (cos 0) + %P$ (cos 0) cos my,  ( 3 . 9  ) 

where Pn and Pn TM are the Legendre polynomials and associated Legendre functions; a and 1 
are arbitrary constants determining the amplitudes of the zonal flows and the vortices, re- 
spectively. Unlike the case of a plane disk, here there is a term ~cos 0 with a coefficient 
depending on fir and on n. 

Let the center of the vortex be at the point �9 = ~0, 0 = 00. Then in the neighborhood 
of%,Oo we have ~ = k[sin~Oo(~--~0)~2(0--00) ~] where q = s163 is the ellipticity of the 
vortex. Since d~/dt = 8~/88, we have RsinOod~/dr = 2kn2(0 - 00) 2, N2(O - 80) 2 = ~/k - 
sin 2 80 (~--%)~. Hence RsinOodT/dt = 2kDv~Zk - sin 2 80 (~--~0) 2. Putting x = RsinSo (~--~0), 
y = R(8 - 80), we obtain the equation of an ellipse x2/s 2 + y2/s = R2~/ki 2 = I. Sub- 

stituting this equation into the equation for d~/dt and integrating, we find the period 

1 

f d~ _ ~R T 
- -  V i -  ~ ~ " 

The angular velocity of the vortex near its axis is then v, = 2~/T = 2kq/R or, since 
2ksin 2 0 = 82~/8~ 2, 

m2 ~P$ (cosO) cosm~.  (3.10) 
V ,  - -  R sin28 

Here the subscript 0 is omitted on 8 and ~. In the rotating coordinate system the angular 
velocity of the center of the vortex is equal to zero, while in the fixed coordinate system 
it is ~. 

Using (3.9), we can express the parameters I and a in terms of the given coordinates 
of the center of the vortex ~0, 80 and its ellipticity q. Using the definition of a singu- 
lar point 8~/8~ = 8~/88 = 0, we obtain two equations for vortices located at azimuths satis- 
fying sinmT = 0: 

' 

aPn -6 ~ P ' cos mop ~ 2QR sin 8 
2 --n (n + i)' 

( . " m-w pm [ 2.qR cos 0 
aP.,, + ~ P'~)" + sin 2 8 --~ J cos mop --- 2 -- n (n-+ t) 

(the prime denotes a derivative with respect to 0 and the subscript 0 is omitted). 
tion of the system (3.11) has the form 

(3.11) 

The solu- 

_ 2~t~/D (P;~ cos 0 - -  7"~i~ sin 0), ~,cos mq) 2 - - n ~  1) 

,,, n rn- 'q D m  ] 2QR/D pro) + s i n 0 - -  , 
a 2 - -  n (n ,-i- i) sin'Z 8 - n  ] (Prim) ' cOsO 

where the determinant D =[(Pnm) '' + m2N2Pnm/sin2 e]P n' - (Pnm)'/pn ''. For resonant values of 
e and q, where D + 0, the constants X and a go to infinity. 

An interesting case occurs when (Pnm)0 ' = 0, when v ~ = 8~/8e goes to zero at 8 = 80 sep- 
arately for latitude flows and for vortices. In this case, 
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�9 r t  / 

2QR cos 0 -- sm OP,JP n 2t2R sin 0 t 
E c ~  - t )  (P',~)" ~,- m' q2p~7,/s,n20 ' a = 2 - -  n (n ;- 1 ) '  Pl, " ( 3 . 1 2 )  

Here X + ~ at resonance and a remains finite. However, it should be noted that large values 
of X (corresponding to large vortex amplitudes) are outside of the region of applicability 
of our approximation v r = 0. 

When there exists a background latitude flow with nodes v~(6), vortices will form at 
the nodes of the background flow [6], since vortices can exist at these points with arbit- 
rarily small amplitude (in the limit q + ~). But in the absence of such a background flow, 
vortices can be created at any point of the sphere and as the vortex amplitude X increases, 
the amplitude of the background a will also increase, and the background and vortex are de- 
scribed by a single "eigenfunction." 

If we assume that vortices are generated together with the corresponding latitude flows, 
then the rotational velocity of the planet can be obtained from the condition a + 0, ~ + 0, 
which according to (3.9) implies that v~ = "2SRsinS/[2 - n(n + i)]. This corresponds to 
rigid body rotation with an angular frequency ~0 = 2~/[n(n + i) - 2] in the rotating coordi- 
nate system. Hence the relative angular velocity of the center of the vortex and the planet 
is -Q0 = 2~/[2 -n(n + i)] < 0 (n e 2). Therefore, the azimuthally independent solutions 
B = -n(n + i) in the limit a + 0, X § 0 include steady configurations rotating rigidly with 
the angular velocity -Q0. The symmetric solution B = 0, n = 0 describes a nonrotating planet 

with flo = -~. 

When (Pnm)0 ' = O, the use of the second equation of (3.8) gives for v, and the variable 
part of the stream function 

2m2Q~l cos 0 - -  sin OP'~/P' n (0 = 0o); ( 3 . 1 3  ) 
~r = 2 - -  n (n -4- t) n (n + t) sin20 - -  m 2 (t -~ ~l 2) 

2~2R f s in0 .  P cosOo__sinOo(Pn/p'n) ~ pm cosmcp/  
Vit=2__n(n. .~l  ) [COS 0 -{- 7-7"v-, n ] (3.14) 

( P . ) o  . ( .  + 11 - (i + % 

When m = 1 we have Pnm = -Pn', and therefore in the "resonance" case (Pn") = 0 and 
(3.13) and (3.14) become 

2Qn cos 0 (0 - -  0o); 
'V, ---- 2 __ n (n + t) n ( n + t )  sin 2 8 - t - ~ 1  z 

2f~R { s i n ~  
~ --2--n(nq-l) COS 0 q- Pn-- 

cos O o P '  ] 
c o s  q) 

t1 - ( t  - n * ) / s i -  Oo 

(3.15) 

(3.16) 

If it is required that one of the circular streamlines coincide with the equator, then n = 
2, 4, 6, ..., and the flow patterns in the northern and southern hemispheres are different, 
the singular points are located at the nodes of Pn"(@) for ~ = 0 and ~, and the ellipticities 
at these points are related by n+ 2 + q_= = 2n(n + i) sin28 0 - 2. If both of the points 
are elliptic (vortices) then the separatrix angle dividing the two families of vortices ro- 
tating in opposite directions can be estimated from the condition ~" = 0 at 8 = 80. We then 
obtain cos~ S = (q+a _ q_2)/(N+2 + q_a). The requirement 8v~8 = 0 at 8 = ~/2, which is 
satisfied for n = 3, 5, 7, ..., leads to a symmetric flow pattern in the northern and south- 

ern hemispheres. 

Figure 1 shows the steady flow configuration �9 = const with vortices on the surface 
of the rotating sphere constructed from (3.14) withm= 3, n = 2, 8 o = 60 ~ , q = i/~3"(north- 
ern hemisphere). There are six vortices. The small vortices are bounded by separatrices 
with hyperbolic points displaced toward the pole, and rotate in the same direction as the 
planet. The large vortices rotate in the opposite direction. 

Figure 2 shows the streamlines �9 = const for the configuration (3.16) with m = i, n 
= 2, 8o = 45 ~ , n = I (northern hemisphere). Here there is a single vortex which rotates 
in the direction opposite to the planet with v, = ~//8" near the vortex axis. The second el- 
liptic singular point is the displaced center of the zonal flows. 
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Figure 3 shows the flow pattern T = const of (3.16) for m = i, n = 4, 00 = 69 ~ , q = 
1 in the northern (a) and southern (b) hemispheres. The vortex in the southern hemisphere 
resembles the Great Red Spot of Jupiter in its location, shape, size, and direction of rota- 
tion (opposite to the rotation of the planet). Its angular velocity of rotation near the 
vortex axis is ~, = 0.015~, and the average angular velocity at the periphery v* = 0.07fi is 
close to the value observed for the Great Red Spot. 

Figure 4 shows a similar flow pattern, but for m = i, n = 6, e 0 = 76 ~ . Here the zonal 
flow has a large number of nodes and there exists a vortex bounded by a separatrix in the 
southern hemisphere. It is close to the shape of the Great Red Spot and is rotating oppo- 
site to the direction of rotation of the planet with ~, = 0.0028~ near its axis and v* = 
0.03fl at the periphery. Its size and average rotational velocity are about half as great 
as for the Great Red Spot on Jupiter. 
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The steady flow patterns shown in these figures represent a very small class of possible 
steady flows and result from the linearity of the function J'(T). The existence of solu- 
tions qualitatively describing such exotic phenomena as the Great Red Spot of Jupiter within 
this small class of solutions indicates that the Great Red Spot can be understood in terms 
of the theory of normal modes presented here. 

Appendix. In general the system of gas-dynamical equations describing the steady state 
is an incomplete system, and additional equations must be found in order to obtain a unique 
solution. In many cases the missing equations can be obtained by starting from known sta- 
bility conditions. 

The simplest example is the equilibrium of a plane atmosphere, where there is only a 
single equation 

p'(z) = --pg (A. 1) 

for two unknown functions: the pressure p and density p. Adding the equation of state of 
an ideal gas p = (k/m)oT does not help, since a new function (the temperature T) has been 
introduced. For this problem it is natural touse the well-known condition for convective 
stability that the entropy increase with height [3] 

(pp-~)' > O. (A.2) 

However, the stability condition isan inequality, whereas we need an additional equa- 
tion in order to obtain a unique solution of the problem. The needed equation can be ob- 
tained using the Kelvin hypothesis [ii] of equilibrium on the stability boundary. In this 
hypothesis the inequality (A.2) is replaced by the equation (pp-7)' = 0, which when inte- 
grated leads to the constant entropy condition p9-7 = const. A more accurate description 
of the structure of the atmosphere results when instead of the adiabatic index 7 we use the 
polytropic index 70, which according to (A.2) is smaller than 7. Then as an additional equa- 
tion we have 

pp-Vo ----- const. 

Integrating (A.I) and (A.3) we find the unique solution T = T0---- 
1 

~To/ which contains the single unknown constant 7o. 

vo (A.3) 

- t / ~ '  o p = / T ~ ~  --tO = 

' oo 

The resulting theoretical dependence closely describes the measuredvariation of tempera- 
ture and pressure in the dense lower layers of the atmospheres of Earth and Venus for the 
identical value of the parameter 70 = 1.235. 

When a certain height z I (z I = ii and 60 km for Earth and Venus, respectively) is ex- 
ceeded, the linear decrease in temperature stops and there is a region of constant tempera- 
ture T = Tz = const. As follows from the equation of equilibrium (A.I), p and p decrease 

___v= 0 { ~-5) exponentially (70 = I): T=Tz, Pl 9-~=exp~ ~ �9 

The linear decrease of temperature stops for z > z I because the atmosphere above zz be- 
comes effectively transparent to radiation. That is, its barometric thickness s = Pz/Pzg = 
kT1/mg is comparable to its optical thickness s = I/<pl which determines the mean path length 
of photons at height z I. It then follows that when z = z I we must have the relation p = 
g/<, where < is the coefficient of opacity of the atmosphere [12, 13]. 

The treatment given here is quite general and is also applicable to stellar atmospheres, 
for whichthe value of the boundary temperature T I is a very important characteristic. For 
example, it determines the luminosity of the star L = ~R2oTI 4 We can write the equation 
for the boundary temperature in the form Tz = Ag, A = ms Assuming that the optical length 
s is inversely proportional to the effective molecular mass m, we have A = const and T I ~ g. 
The value A = 22 K'sec2/m corresponding to the measured values of T I = -57 and -75~ for 
Earth and Venus, gives T I = 6000 K for the effective surface temperature of the Sun, which 
is also close to the actual value. 
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ASYMPTOTIC OF A SLIGHTLY VISCOUS FLUID FLOW UNDER THE EFFECT 

OF TANGENTIAL STRESSES ON A FREE BOUNDARY 

V. A. Batishchev UDC 532.526 

Formal asymptotic expansions of the solution of a plane nonlinear stationary problem 
with a free boundary are constructed for high Reynolds numbers under the assumption that 
the surface tangential stresses are given and have a finite value. The boundary layer equa- 
tions near the free boundary are nonlinear, while the principal terms of the asymptotic out- 
side the boundary layer satisfy the Euler ideal-fluid equations. It is shown that the ac- 
tion of the tangential stresses results in the appearance of an additional term equivalent 
to the surface tension forces in the dynamic boundary condition on the free boundary of a 
"limit" inviscid flow. 

i. A plane nonlinear stationary problem on the motion of an incompressible fluid is 
considered for the Navier-Stokes equations with vanishing viscosity (v § 0) in a domain D 
bounded by the free surface F subjected to tangential and normal stresses given on F: 

(v, V)v = --9-1Vp + vAv + g, div v = 0; (1 .1)  

p--2pvOvn/On=p.+• pvn(~.V) v = T ,  ( x , z ) ~ F ;  (1 .2)  

v . n  = 0,  @, z) ~ r. ( 1 . 3 )  

Here v = (Vx, Vz), g = -gez, e z = (0, i) is the direction of the z axis, p is the fluid den- 
sity, g is the acceleration of gravity, o = const > 0 is the coefficient of surface tension, 

is the curvature of the free boundary F (K > 0 if F is convex outside the fluid); n and 
are unit vectors of the external normal and the tangent to F; p, is the given pressure on 
F; and T is the tangential stress on F [T = O(i) as v + 0]. It is assumed that the domain 
D is not bounded and the behavior of the velocity field at infinity is given. 
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